skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cottle, Frederick S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Transformers, although first designed for sequence processing, can also handle unordered sets like point cloud data. Additionally, contrastive pretraining has emerged as a successful technique in image processing but remains unexplored for point cloud data. We develop and integrate a new point cloud pretraining technique inspired by the Simple Framework for Contrastive Learning (SimCLR) into the Set Transformer (ST) and Point Cloud Transformer (PCT) architectures and explore model performance using a novel 3D body scan dataset and the canonical datasets ShapeNet and ModelNet. For the 3D body scan dataset, this integration boosts initial training performance and maintains overall higher performance for classification tasks, and demonstrates better stability/convergence for regression tasks in comparison to non-pretrained (Naïve] counterparts. Furthermore, experiments examining strong generalization (relative performance on previously unseen classes) show improvement for pretrained models compared to Naïve models. Consistent benefits across tasks and data sets are observed based on additional experiments performed on the ShapeNet core dataset. Overall, we show how contrastive pretraining for point cloud data is a viable strategy for improving the performance of Transformers on downstream tasks and accelerating the training process. 
    more » « less